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1   Introduction 
 

This paper describes the 2009 Franklin W. Olin College of Engineering Intelligent Ground Vehicles Competition 

entry: Brian. Brian is an intelligent ground vehicle specializing in road following, GPS navigation, and obstacle 

avoidance. The team at Olin designed, constructed, and tested Brian starting in February 2009 and ending May 16th, 

2009. This paper describes the vehicle’s design as well as the methodologies used to develop it. 

2   Team Organization 
 

The Olin College IGVC team has five members, all of whom are sophomores. There are only two formalized 

positions: team captain and financer. The team captain manages team progress while the financer tracks the team’s 

expenditures and completes necessary paper work. Given the short time frame in which the team had to complete 

the design and implementation of the robot, we could not make a full recruiting effort. However, we are able to 

leverage the talents of our team and our flat organizational structure to quickly fulfill objectives. The team is 

composed of two electrical engineers, one mechanical engineer, one systems engineer, and one software engineer. 

Using these natural talents, we are able to distribute tasks in order to meet major milestones. We use a work in 

progress – or WIP – method to distribute labor. On a two week basis we define a list of sub-tasks whose 

completion fulfills those weeks overall objectives. We then assign each task to a specific team member, who places 

his or her tasks on our lab’s WIP board. Each person has three task categories on the board: to do, in progress, 

and complete. This aid allows the team leader and members to monitor progress and ensure that work is 

distributed evenly throughout the semester. It also clearly defines expectations and responsibilities for each team 

member. 

3   Design Process 
In order to make design decisions, our team follows an iterative process. Because of 

our relative inexperience in building intelligent vehicles, we begin each major 

decision with a concerted research effort. Each team member reads papers from 

previously successful IGVC teams and other robotics research universities. We 

then compare possible solutions in a decision matrix that compare each idea’s 

merits on their effectiveness at achieving their goal and their ease of 

implementation. Based upon this comparison, a method is adopted and a unique 

metric for testing that solution’s effectiveness is developed. In order to Figure 1: The final SolidWorks
model of Brian. 
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implement the proposed design, we begin with the creation of a computer simulation and then make physical 

prototypes. Simulation is done using SolidWorks and Comsol for mechanical design and LabVIEW for software 

development. After implementation, if our approach passes required benchmark testing, we move on. If not, a 

new solution was implemented and tested. To augment this iterative process, our team also holds community-wide 

design reviews each month to seek feedback from professors and students. This invaluable, outside feedback leads 

to major design revisions that improve robot function.  

 In this iterative process we make decisions based on the following set of values, defined at the beginning 

of the season.   

 Brian will serve as research platform for other students in Olin Intelligent Vehicles Lab as well as our 

future IGVC mechanical platform. As a result, our highest priority was creating a simple, robust robot 

that would allow for extensive future software development.  

 Second, we hoped to minimize the cost of robot production. To do this we mostly used components 

our college already owned or parts donated by sponsors.  

 Finally, we wanted to create a design that could be implemented in four months, allowing us to 

qualify for the 2009 IGVC. As a result, we favored designs that we could implement quickly, allowing 

ample time for systems integration, debugging, and testing. 

 These guiding values and our design processes led to the hardware and software decisions that are 

outlined in sections 4 and 5 of this document. 

4   Hardware 
 

The 2009 Olin College IGVC entry, Brian, incorporates several innovations in both selection and implementation 

of hardware. The hardware design adopted by the Olin IGVC Team is outlined in this section. First, we introduce 

a basic description of Brian’s physical systems. Brian is a retrofitted Chimp Human Transport Vehicle from Doran 

Electric Vehicles. The only remaining systems from the original vehicle are the undercarriage frame, the drive 

wheels, the axles, and the front drive motor. All other fabrication and design were done in house at Olin College. 

The chassis is made of 6020 aluminum square tubing and plate and connected using galvanized steel mounting 

brackets. The entire system weighs three-hundred-sixty pounds. All of the vehicle’s major components are listed in 

the following bill of expenditures. 

Part Cost to Team Estimated Cost 

Point Grey Digiclops Stereovision System $0 $9000 

SICK LMS291-S05 LIDAR $0 $6000 
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Doran Electric Vehicles Chimp Human Transport1 $0 $3195 

Dell Latitude D620 $0 $2000 

SmallPC SC525-P24 $0 $1300 

Sensoray 626 Analog & Digital I/O $0 $660 

Ublox Odometry Enabled GPS $0 $600 

Galil MSA-12-80 Motor Controller (quantity 2) $0 $360 

Pittman GM14904S016-R1Motor with Encoder $350 $350 

Autec Wireless Emergency Stop $0 $340 

Fastcom 422/2-ISA $0 $300 

Pitman GM9236S027-R1 $260 $260 

Mechanical Emergency Stop Button (quantity 2) $240 $240 

Weatherproof Encoder $0 $225 

Aluminum Stock $180 $180 

Rosewill RC-602 Firewire Card $0 $15 

Total 
$1,030  $25,025 

 

4.4   Hardware Innovations 
 

Hardware innovations on Brian come from both the selection of components and their utilization. When selecting 

sensors for Brian the Olin IGVC Team created redundant systems that more robustly avoid a wider range of 

obstacles. By using both the Point Grey System and SICK LIDAR to detect obstacles, Brian compensates for both 

sensors’ points of failure. 

 The other major hardware innovation was how these sensors are mounted. To begin, we examine the 

mounting, and resulting actuation, of the Point Grey System. 

The camera mounts to a seventy-inch sensor mast. However, 

instead of statically fusing the mast to the chassis, it is tied to 

the steering column with a universal joint, as shown in 

Figure 2. The universal joint allows two key advantages. 

First, it points the camera in the same direction that the 

front wheel points. The camera has a narrow ninety degree 

viewing angle, while the robots front wheel can move to a 

steering angle of forty five degrees. If the camera were 

statically mounted, the robot would only see obstacles and 

lines to the inside of the wheel when taking steep, forty-five 

degree turns. Thus, by rotating the camera, Brian always sees the maximum viewing area of the ground he is about 

                                                            
1Includes two Chairman AGM-12100T Deep Cycle Lead Acid Batteries and one Curtis 1228 controller 

Figure 2: The universal joint used to turn our camera to
face towards the front wheel's direction of travel. 
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to cross over. We also use the universal joint to gain another key advantage. This joint transforms the camera’s axis 

of rotation to be perpendicular to the ground plane. This both makes our transforms easier to understand, and 

means we have more consistent camera data. Thus, by tying the camera to the front wheel’s actuation via the 

universal joint, we are able to better detect lines and obstacles during vehicle turns. 

 The other primary outward facing sensor, the LIDAR, is also actuated. The LIDAR’s placement provides 

an ability key to this year’s competition: pothole detection. By mounting the sensor facing down toward the 

ground plane, we are able to detect the two inch 

potholes that must be avoided as per 2009 IGVC 

rules. Additionally, by actuating the LIDAR head, 

we give Brian a higher level of function. The 

actuated LIDAR can be used to adjust our 

scanning angle during a competition run. This 

allows Brian to increase or decrease his scanning 

range based on proximity to desired target. In the 

future, the addition of oscillation will make Brian a 

more flexible research platform. Actuating the 

head allows rapid testing of different head 

positions. This also allows for continuous 

oscillation. When combined with higher processing speeds, this motion can yield a three dimensional LIDAR 

image. 

 Additionally, the method of oscillating the LIDAR is advantageous. The system uses a four bar linkage. As 

a result, constant rotation of the attached motor in one direction simply oscillates the LIDAR head up and down 

through a range of adjustable values. This both makes constant oscillation easier, while also ensuring that software 

failure does not crash this expensive sensor into the chassis. By using a four bar linkage, the LIDAR has a fail safe 

mode and can oscillate without reversing motor direction.  

 

4.2   Vehicle Dynamics & Encoder Localization 
 

To understand Brian’s motion, we use the model of vehicle dynamics outlined in this section. Brian is a human 

transport tricycle with a single velocity-controlled front drive wheel. The front drive wheel’s steering angle 

actuation is position controlled using a Pittman motor. As a result, Brian’s motion is nonholonomic. To describe 

this nonholonomic motion, we developed a mathematical model, whose constants are defined in Figure 4. The 

robot’s change in global heading, Δφ, can be modeled by 

 

Figure 3: The four bar linkage used to actuate the LIDAR.
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where ΔS is the change in distance traveled by the front 

wheel, θ is the steering angle of the vehicle, and L is the 

distance between the front and rear axle of the vehicle. 

Using this, we can determine the distance traveled over 

time 

 

where r is the turning radius of the vehicle. 

Finally, from this we derive the change in global position 

as: 

 

and 

 

 

where Δx and Δy are the change of the robots global 

position in the Cartesian coordinates (x,y). With this 

information, we have both a mathematical model that proactively controls robot motion and retroactively 

determines the robot position. This model converts wheel odometry to a precise robot localization over relatively 

small distances. 

4.3   Sensors 
 

The sensors onboard Brian are divided into three separate classes: localization, object detection, and line detection. 

Brian localizes using five sensors: three quadrature encoders, one Hall effect sensor, and one ublox GPS. The 

encoders measure rotational position of the motors powering the LIDAR tilt, drive wheel, and the steering angle. 

These values can be used to estimate vehicle position based on the mathematical models outlined in section 4.2. 

However, these sensors only measure change in position, not absolute position. As such, they must begin properly 

zeroed. The mechanical design of the LIDAR head allows for easy manual zeroing, as the four bar linkage gives 

the LIDAR an obvious minimum position. The drive motor does not require zeroing, as it is velocity controlled. 

The steering angle control motor requires both the most accurate zero and has the most difficult to find zero 

position. To mitigate error generated by inaccurate steering motor zeroing, we installed a Hall effect sensor. The 

Pittman motor used to position control Brian’s steering angle connects directly to a large sprocket that turns the 

steering column via a chain linkage. The Hall effect sensor is mounted directly below this sprocket. This, in 

concert with a sprocket-mounted magnet, allows Brian to accurately zero his front motor position which in turn 

creates more accurate odometry localization. 

Figure 4: Measurements that are used to describe Brian's 
vehicle dynamics: the steering angle is θ, the turning radius 
is r,  the distance between rear and front axle is L, the 
robot heading within the global reference frame is φ, and 
the global position (from the center of the rear axle)  is 
(x,y). 
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 In addition to localizing using encoder informed wheel odometry, Brian uses a ublox Encoder Enabled 

GPS to localize globally. This unit has a relatively cheap GPS chip. However, it does have one key advantage. The 

system not only localizes using readings from GPS satellites, it also incorporates odometry from wheel encoders 

and an onboard accelerometer. These sensor inputs are synthesized in the ublox using a Kalman Filter to create a 

single localization. This both increases the accuracy of the unit and keeps the unit from losing localization during 

periods of GPS outage. 

 Brian detects objects using two outward facing sensors: the SICK LMS291-S05 LIDAR and the Point 

Grey Digiclops Stereovision System. The SICK uses the flight time of emitted 905nm ultraviolet light pulses to 

calculate the distance to nearby objects. It returns a distance to nearest obstacle at every one degree increment in 

the range of angles shown in Figure 5. The instrument is currently calibrated to measure obstacles at a range of up 

to thirty-two meters with an individual measurement tolerance of ±1mm. Using algorithms described in our 

software section – section 5 – we are able to differentiate between range measurements representing the ground 

plane and range measurements representing obstacles. 

 The Point Grey Stereovision System uses images from three different cameras to find the disparity 

between similar pixels in each image. This disparity in pixel location results from parallax. This is used to create a 

disparity map of a single image. This disparity map has an inverse relationship with distance that can be used to 

calculate a point cloud of pixels. Each point has a location in three-

dimensional space and a corresponding color value. Again, using 

algorithms outlined in our software section – section 5 – we are able 

to separate points which represent the ground plane from points 

which represent obstacles. Thus, we have two, redundant obstacle 

detection sensors. This design feature compensates for sensor 

imperfections to detect a higher range of object materials. Any 

material that does not reflect 905nm ultraviolet light cannot be 

detected by the LIDAR. Likewise, the Point Grey camera cannot 

generate a disparity map of highly uniform colors because it cannot 

differentiate distinct pixels. If only a single sensor was used to 

detect obstacles, our robot would fail either in cases of non-

ultraviolet-reflective materials or uniformly colored materials. 

However, by introducing a redundancy, our robot is able to detect 

obstacles made of a much wider range of materials. 

 Our final sensor class is the line sensing class. To sense lines, we again use the Point Grey Digiclops 

Stereovision System. By removing obstacles found using the disparity maps, we are left with an image of only the 

ground plane.  Using this data subset we find lines using the algorithms described in section 5.  By only searching 

for lines in the ground plane, we are able to ignore line-like features on obstacles themselves. The team also 

Figure 5: The red area shows the range of angles
scanned by the LIDAR (180 degrees in total),
while the navy section shows the area captured by
the Point Grey when the front wheel is pointed
forward.  The Purple is the area scanned by both
when the front wheel is pointed forward. 
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attempted to introduce redundant line sensing by observing the energy of reflected LIDAR beams. Materials that 

absorb LIDAR’s 905nm ultraviolet light more readily can be differentiated from materials that are highly reflective. 

Unfortunately, the energy of waves reflected of white painted grass cannot be differentiated from the energy of 

waves reflected of unpainted grass.  

4.4   Computing 
 

Computing onboard Brian is distributed between two computers. The first is a SmallPC brand rugged PC with a 

2.4GHz Intel Pentium IV processor. The second is a Dell Latitude D620 laptop with a 2.16 GHz Intel Core II 

Duo Processor. These computers were selected due to their no cost availability. Both machines run Windows XP 

professional and are programmed using National Instruments’ LabVIEW software. The two computers 

communicate via TCP/IP through a datasocket server hosted on the Dell. The Dell handles all image acquisition 

through a Rosewill RC-602 PCMCIA FireWire card. Images are processed on the laptop – as described in section 

5 – in order to create an array of all points identified as lines and objects by the Point Grey System. These points 

are in Cartesian coordinates with the origin located in the camera’s frame of reference. This array is then passed to 

the datasocket server. A separate machine is required for the Point Grey System because of the computationally 

intense nature of stereo vision image processing. Additionally, the laptop provides an easily stored and easily 

accessed onboard monitor for field testing and debugging. 

The small PC reads from the datasocket server to incorporate vision data into cognition code. The 

SmallPC acquires and processes data from all other instruments onboard Brian. The PC utilizes three PCI slots to 

communicate a FASTCOM 422/2-ISA serial port, Sensoray 626 Analog & Digital I/O, and a Linksys LNE100TX 

Etherfast LAN Card. These cards are used to control motors, receive user button input, read encoder values, 

communicate with the LIDAR, read from the GPS, and access the Dell’s datasocket server. 

5   Software 
 

Brian was programmed in LabVIEW for two major reasons. First, LabVIEW’s extensive libraries made interfacing 

with hardware trivial. Also, from Professor David Barrett’s prior experience of, we knew people without 

programming experience could learn the language in under a week. This was crucial, as only one member on the 

team entered with LabVIEW programming experience. Using LabVIEW allowed us to quickly learn a common 

programming language and rapidly deploy our design. 

The software architecture used onboard Brian exploits the advantages of a reactive paradigm. The reactive 

paradigm of navigation differs from the canonical sense, plan, and act paradigm by removing the planning stage of 

the algorithm. Instead, the robot uses a simple algorithm to react to the environment around it. First we will 

describe the software Brian uses to sense the world in the following three subsections, then we will describe the 

algorithm that Brian uses to act, and finally we will discuss the advantages of a reactive paradigm for competing in 

the IGVC. 
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5.1   LIDAR Filtering 
 

As described in section 4.2, the LIDAR returns 

measurements to the nearest obstacle for a 180 degree arc segment in front of the 

robot. This data must be processed to determine which data points represent obstacles and 

which points merely represent the ground plane. The 2009 IGVC rules stipulate that the ground 

will never exceed a fifteen percent grade. Our filter is based off assumptions made as a result of 

this rule. If we assume that the ground has a constant fifteen-percent grade incline in all 

directions – the maximum allowable incline – the result is a conical plane like the one 

illustrated in Figure 6. Any data point that lies above that plane must – as per the 

challenge rules – be an obstacle. We assume that all points 

below this plane are ground. With this algorithm, Brian can 

detect an obstacle with a height of six-inches or larger at a range 

beyond his forty-inch turning radius. This approach allows 

Brian to detect and pass obstacles with a height greater than 

six inches without slowing down. Because the head can 

oscillate, we can also detect an obstacle of a height of just over two inches at a range of nineteen inches in front of 

the robot. While this does not allow passing without stopping – as twenty inches is within Brian’s turning radius – 

it does allow us to avoid collisions with even small obstacles. This filter has one primary advantage: speed. Brian 

can very quickly compare LIDAR data point with a pre-calculated value in a lookup table to determine whether or 

not the point is an obstacle. 

 While this method allows us to detect obstacles, it does not help avoid potholes. To do this, the data 

filtered out as part of the ground plane can be processed. The data is first transformed into Cartesian coordinates 

in the LIDAR’s frame of reference. Next the data points are processed in order. The altitude of each point is 

subtracted from the point that followed it in the scan. If the difference is found to be two inches ±0.5 inches, then 

that point is placed in a memory array. If the slope between a point and the point that follows it is negative, the 

point’s location is placed into the array with a negative altitude, while pairs with a positive slope receive a positive 

altitude. When all points with proper slopes are placed into the array, an algorithm described by the following 

Turing Machine can be used to find which points in that array are part of a pothole.  

1. Read altitude value of the first input point.  

2. If it is positive, remove it from the array and go to Step 1, else continue. 

3. If the second point in the array is negative, remove the first point and go to step one, else continue. 

4. If the distance over the ground plane between first and second points is between 1.5 and 2.25 feet apart, 

both points are part of a pot hole. Remove them from the array and record them as part of a pothole. 

5. If the memory array has one or fewer elements, terminate, else go to Step 1. 

Figure 6: The red cone is a visualization of a 15% grade
increasing in all directions around the robot. Brian assumes that
any point reflected to the LIDAR above that plane is an object. 
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This ensures that a falling edge is followed by a rising edge. Also, it makes sure the distance between edges is at 

least one and a half feet and no more than two and a quarter feet – based on our knowledge of the challenge rules 

stipulating two foot potholes. We do not allow smaller diameter pothole cross sections to be detected because 

random noise generated by variance in grass height could then appear to be pothole. This will place two line 

segments in our occupancy grid, and not the pot hole’s full circle. However, 

due to our obstacle avoidance algorithm’s tendency to avoid obstacles with a 

large clearance, Brian will still avoid the entire pothole (the specifics of the 

algorithm will be discussed in section 5.4).   

5.2   Vision Filtering 

The goal of our vision filter is to find obstacles and lines on the 

ground.  We accomplish this through two main filters:  the first determines 

where the ground plane is, and the second determines what pixels on the 

ground plane correspond to the white or yellow lines.   

The first filter is used to determine what the ground plane is and 

eliminate any other obstacles.  As was mentioned earlier, the Point 

Grey camera returns a disparity value for every pixel that is inversely 

proportional to the distance from the camera.  Because the camera 

maintains the same height and angle with the ground plane, the plane 

of the ground (excluding obstacles) should always have roughly the 

same disparity map.  This flat map is shown in Figure 7.  When 

obstacles, such as barrels, are added to the camera’s field of view, the 

disparity map changes 

accordingly, as the 

obstacle locations have higher disparity values (as visible in Figure 9).  

A standard ground plane disparity map is subtracted from the current 

disparity map from the camera.  After this subtraction occurs, the only 

remaining positive values are obstacles.  Two filters are then applied.  

The first removes the ground plane and retains the obstacles, which are 

then added to the global obstacle certainty array.  The second removes 

the obstacles and retains the ground plane.  Some morphological post-

processing is then done to clean up the image, and a ground plane mask 

is created.  This mask is applied to the color image to return only the 

ground (Figure 8). 

Figure 7: A disparity map of a level, flat ground
plane (note some deviation in the ground is
visible to the upper right as we could not find a
completely flat patch of ground). 

Figure 9: Disparity map showing some obstacle
in the way. 

Figure 8: This figure shows the image after the
obstacles have been filtered out.  Note that while the
filter is effective, it does miss the edges of the
obstacles. 
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The second main filter is used to determine where the painted white lines are.  We approached this filter 

using two different methods.  The first was a simple blue filter.  This was modestly effective because there is a 

large quantity of blue in white lines, but very little in green 

grass.  Issues arose with this filter, however, because it 

required sitting with the robot looking at the lines and 

adapting the filter values whenever the lighting conditions 

changed, which is decidedly not robust.  To create a more 

robust filter, we adopted a hue and lightness filter.  Both of 

these filters are adaptive to the image, creating threshold 

values based off the average HSL values of the entire image 

and the standard deviation of each.  This filter removes the 

most abundant color from the image, which makes the filter 

generally effective in a variety of different lighting conditions and on a multitude of different ground types (grass, 

asphalt, etc.).  The results can be seen in Figure 10. 

5.3   Mapping the Environment 
 

In order to make sense of data received by instruments, it is placed into a global occupancy grid, represented by a 

two dimensional array. Each cell of this two-dimensional array corresponds to a three-by-three inch area of the 

race course. While three-dimensional data of each obstacle or line point is known by the robot, and used to detect 

the points placed in the occupancy grid, the altitude dimension can be disregarded in this case. This is a valid 

assumption because the race course never exceeds a fifteen-percent grade. Assuming a flat world in our data 

storage method introduces a maximum error of 1.3 inches at the ranges of zero to ten feet scanned by our sensors. 

Placing data into the occupancy grid can be done by subtracting the point’s transformation into the global 

reference frame from the robots position in the global reference frame. Because this result is in inches, modularly 

dividing the coordinates by three determines the data’s position in the occupancy grid (as shown in the following 

equation). 

 

 

Once the location within the global occupancy grid is determined, we increment the corresponding array cell. In 

our data representation, we differentiate between lines and objects by storing their data points in two different 

occupancy grids.  

 In order to keep track of obstacles and lines detected at previous cycles of computation, the occupancy 

grid arrays retain their values across cycles of computation. Instead of overwriting the value of cells with previously 

detected obstacles and lines, the value of the cells are incremented. Because our camera captures a 360x240 pixel 

image at the same 10Hz rate as our LIDAR – which only captures 180 pixels per scan – we must increment data 

Figure 10: This figure shows the location of the lines in
the image. 
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for these two instruments differently. Any data point found by the LIDAR is incremented at a rate two orders of 

magnitude larger than the rate of increase for the camera. This creates a certainty value that is proportional to the 

magnitude of each cell in the array. However, over time, imperfect localization erodes the accuracy of data 

correlation over large distances. That is to say within the occupancy grid, the distance between currently sensed 

objects and objects sensed long ago is not an accurate correlation. As a result, in addition to having a memory of 

old previously sensed locations, our occupancy forgets over time. Every five computation cycles, we decrement 

each cell in the array the equivalent of one LIDAR data point increment. This means that over time, if an obstacle 

or line is not continually detected, Brian becomes less certain it exists, until he forgets it was ever there at all.  

5.4   Reactive Algorithm 
 

With occupancy grids described in section 5.1, the robot applies a simple algorithm to determine its action. Both 

lines and obstacles must be avoided. Thus for our reactive paradigm, we generate a third occupancy grid. This grid 

is the sum of both the line and obstacle arrays. Each cell in the resulting occupancy grid exerts a virtual force on 

the robot. This force is summed over all cells as defined in the following equation, where F is the total force, k is a 

tuned constant, c is the certainty value of the cell within the occupancy grid, d is the distance between the cell and 

the robot, and m and n are the number of rows and columns in the occupancy grid respectively. 

 

The direction of this force determines the heading of the vehicle, while the magnitude of the resultant vector 

determines the robot speed. In order to decrease computation time, this algorithm is not actually applied to the 

entire occupancy grid. Instead, we apply the operation to a subset of the array. Due to the inverse squared 

relationship of distance, we know that any obstacle or line at a range of more than five feet exerts a negligible force 

on the robot. Thus, we only apply the calculation to a 41x41 element sub array, centered at the robot’s current 

location. 

5.5   Waypoint Generation  
 

Clearly, force described in the previous section pushes our robot away from lines and obstacles. However, the 

robot needs to move to a destination, not just away from lines and obstacles. To achieve this, we add constant 

forces that push the robot towards our desired goal. In the navigation challenge, this is done by adding a single, 

constant magnitude force vector in the direction of the next GPS waypoint. This pulls the robot towards the 

waypoint, until it comes close to an obstacle or line. At that point, the force of the obstacle subsumes the force of 

the waypoint due to the shrinking magnitude of obstacle’s the distance squared term. This repulsive force remains 

the primary determining factor in robot motion until the obstacle is cleared, the distance term grows, and the 

waypoint’s attractive force subsumes the shrinking obstacle forces. 
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In order to direct the robot during the autonomous challenge, a sand piling method is used. The robot 

places a strong, constant repulsive force in the array cell the robot occupied three seconds ago. This helps propel 

the robot forward, and also helps the robot escape local minima. A local minima is a location on the course in 

which all the virtual forces push the robot toward a single point that is not the desired waypoint. After three 

seconds of being stuck at a minima, the robot has a force at its current location that pushes it out of the minima. 

The additional forces added to direct the robot are stored in an array separate from the occupancy grid as they are 

treated differently by the memory.  These constant directive forces are added after calculating the sum of the 

occupancy grid forces. 

5.5   Software Innovation  
 

 

 Brian’s primary software innovation is his use of the reactive paradigm. The reactive approach offers a few 

key advantages. The first is speed. Based off of this year’s rules, as well as investigation of past IGVC courses, the 

team knew that there would be a single closed path for the autonomous challenge. This means that advanced 

decisions about branching and avoiding dead ends would not have to be considered by our robot. This encourages 

a simple, robust solution to the problem. While there is only one path through the course, there are certainly more 

and less optimal driven courses through that path. Our algorithm pushes Brian to the center of the lane, instead of 

closely rounding corners on a more optimized course. However, in reading previous design reports, we quickly 

found the processing demands of computing optimal paths affected robots’ top speeds. Finding the optimal path 

reduces the rate at which a robot can make decisions, and thus, lowers its top speed. This is most evident in our 

robot’s course update rate, which occurs at 10Hz. This is about two times faster than traditional sense, plan, act 

algorithms – as compared to a robot with similar computing power, such as Princeton’s Kratos. This allows our 

robot to travel a suboptimal path at the top allowable speed. This has two advantages; first, we were able to near 

double our top speed. While the suboptimal path may be longer, it is not twice as long. Additionally, the 

suboptimal path takes a wider berth around obstacles. This means there is a greater allowance for error in sensor 

readings and localization. Thus, by using a reactive paradigm we are able to both increase the rate at which we 

cover ground and decrease the probability of us running into obstacles and lines. 

6   Predicted Performance of Vehicle: 

6.1   Speed and Ramp Climbing 

Our Doran Chimp base vehicle is a personal transportation unit designed to carry a 300lb rider at 11mph on a flat 

surface.  The additional electric and mechanical systems on the vehicle are equivalent to a 180 pound person.  

Therefore, we are well within the specification of the original vehicle, and qualitatively expect a comparable 

performance.  We have never had problems with the base vehicle being unable to carry our load.  Our structural 

system even retains the original rider support, allowing for the sidetracked team member to ride the robot.   
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Quantitatively, the motor on the base vehicle is a 1.3 Horsepower 24V brushed DC motor, geared up by a 

3:1 ratio.  At full throttle with a rolling resistance of .065 (accepted value for a tire on grass), the theoretical 

maximum speed of the vehicle is 8mph for a flat surface and 2.5mph for a 15% uphill grade.  In accordance with 

competition rules, we have hardware limited our main motor controller to 4.5 mph. 

In general, we have kept our robot’s speed software limited to 3mph for algorithm development, and have 

discovered that our algorithm efficiency is the critical speed limiting factor, rather than the restrictions of the base 

vehicle.  A fast algorithm therefore directly correlates to a faster competition run speed, the primary impetus for 

our reactive algorithm paradigm. 

6.2   Reaction time 

Our cognition loop runs at 10Hz, meaning that our 

reaction time is limited more by the mechanical 

system than the software.  While the computer is able 

to react to a new obstacle in 0.1 seconds, the steering 

system can theoretically slew 45º in 0.28 seconds, 

slowed by an estimated 5.2 Nm load on the steering 

motor (a Chairman AGM-12100T). 

6.3   Battery life 

The batteries installed on the robot are the original 

Group 27, 115 amp-hr., deep-cycle lead-acid batteries 

from the Chimp base vehicle.  Doran Vehicles 

claims that a Chimp can travel for 30 miles on a 

single charge, which translates to 2.7 hours of continuous usage of the drive motor.  We have worked on the robot 

for 10 hours of on-off usage on a full charge of battery.  Ultimately, we have few worries about our battery 

capacity during competition. 

6.4   Distance at which obstacles are detected 

The obstacle detection distance is highly important, especially for a reactive system, because acting on an obstacle 

too soon or too late can cause unnecessary avoidance or collisions. Our LIDAR is mounted 75cm off the ground 

and tilted at a 15º angle, so our robot detects obstacles less than 2.8m in front of it.  This may seem small, but with 

our 1.01m steering radius and 10Hz cognition loop, this detection distance provides more than enough time to 

avoid obstacles.  However, one of our goals between now and competition is to increase our travel speed, so the 

LIDAR angle may change to adjust this reaction time.   

Our Point Grey Digiclops stereoscopic camera is mounted at a 30º angle off the vertical, 1.8m from the 

ground, with an approximate 90º field of view.  This gives us obstacle detection from the horizon line to 10cm in 

front of the robot.          

Figure 11: Obstacle detection ranges for various sensors.
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6.5   Autonomous Performance 

Our algorithms for both the autonomous and navigation courses use the same obstacle avoidance method to guide 

the robot.  Our autonomous algorithm for switchbacks and islands is a “sand piling” method, where the robot 

uses its position a few seconds before to guide the direction it needs to go, avoiding obstacles and lines along the 

way.  By tuning that time parameter, we can optimize the robot for different situations.  For example, using a 

previous position from a long time ago will guide the robot down straight path with many obstacles, rather than a 

winding path with fewer obstacles.  We will be using our on-site testing runs to tune this parameter for the 

competition course.  Testing has proven this method to be rather robust for switchbacks and islands; however, it 

performs poorly on long dead ends.   

6.6   Navigation Performance 

Our uBlox GPS is our most troublesome (and cheapest) sensor.  The current GPS performance is a 2m radius 

watch circle, which is just barely enough to navigate the valley waypoints effectively.  Accordingly, we do not use 

the GPS for localization, but instead only update the waypoint locations in the robot’s internal map.  Our obstacle 

avoidance algorithm is extremely robust given static waypoints; therefore, we predict efficient travel between 

waypoints but only 2m accuracy upon arrival. 

7   Conclusion: 
 

This paper outlines the design and implementation of Brian, a fully autonomous vehicle created for the 2009 

Intelligent Ground Vehicles Competition.  Five undergraduates at the Franklin W. Olin College of Engineering 

made Brian in four months.  In the process we learned about engineering design and gained significant problem-

solving experience through the realization of a complex, interdisciplinary project.  We would like to thank National 

Instruments and Olin College for their support, as well as Professor David Barrett for his guidance.  We believe 

that Brian represents an innovative design in the IGVC and hope to be competitive in the 2009 competition. 
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